Find the value of x. Round to the nearest tenth, if necessary.

SOLUTION:

An acute angle measure and the length of the hypotenuse are given, so the sine function can be used to find the length of the side opposite θ .

 $\sin \theta = \frac{\text{opp}}{\text{hyp}}$ $\sin 27^\circ = \frac{x}{11}$ $11 \sin 27^\circ = x$ $5.0 \approx x$

Find the measure of angle θ . Round to the nearest degree, if necessary.

SOLUTION:

Because the length of the side opposite θ and the hypotenuse are given, use the sine function.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
$$\sin \theta = \frac{6}{18}$$
$$\theta = \sin^{-1} \frac{6}{18} \text{ or about } 19^{\circ}$$

Write each degree measure in radians as a multiple of π and each radian measure in degrees. 17. 135 °

SOLUTION:

To convert a degree measure to radians, multiply by $\frac{\pi \text{ radians}}{180^{\circ}}$.

$$135^{\circ} = 135^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}}\right)$$
$$= \frac{3\pi}{4} \text{ radians or } \frac{3\pi}{4}$$

19. $\frac{7\delta}{4}$

SOLUTION:

To convert a radian measure to degrees, multiply by $\frac{180^{\circ}}{\pi \text{ radians}}$. $\frac{7\pi}{4} = \frac{7\pi}{4} \text{ radians}$ $= \frac{7\pi}{4} \text{ radians} \left(\frac{180^{\circ}}{\pi \text{ radians}}\right)$ $= \frac{7(180^{\circ})}{4}$ $= 315^{\circ}$

Identify all angles coterminal with the given angle. Then find and draw one positive and one negative angle coterminal with the given angle.

21.342°

SOLUTION:

All angles measuring $342^{\circ} + 360n^{\circ}$ are coterminal with a 342° angle.

Sample answer: Let n = 1 and -1.

$$342^{\circ} + 360(1)^{\circ} = 342^{\circ} + 360^{\circ}$$
 or 702°

342°+360(-1)°=342°-360° or -18°

Find the area of each sector.

SOLUTION:

The measure of the sector's central angle θ is 31° and the radius is 14 inches. Convert the central angle measure to radians.

$$31^{\circ} = 31^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}} \right)$$
$$= \frac{31\pi}{180}$$

Use the central angle and the radius to find the area of the sector.

$$A = \frac{1}{2}r^2\theta$$
$$= \frac{1}{2}(14)^2 \left(\frac{31\pi}{180}\right)$$
$$\approx 53.0$$

Therefore, the area of the sector is about 53.0 square inches.

Sketch each angle. Then find its reference angle.

25.240°

SOLUTION:

The terminal side of 240° lies in Quadrant III. Therefore, its reference angle is $\theta' = 240^{\circ} - 180^{\circ}$ or 60°.

27. $-\frac{3\pi}{4}$

SOLUTION:

The terminal side of $-\frac{3\pi}{4}$ lies in Quadrant III. Therefore, its reference angle is $\theta' = \pi - \frac{3\pi}{4}$ or $\frac{\pi}{4}$.

Find the exact values of the five remaining trigonometric functions of θ .

29. $\cos \theta = \frac{2}{5}$, where $\sin \theta > 0$ and $\tan \theta > 0$

SOLUTION:

To find the other function values, find the coordinates of a point on the terminal side of θ . Because sin θ and tan θ are positive, θ must lie in Quadrant I. This means that both *x* and *y* are positive.

Because
$$\cos \theta = \frac{x}{r}$$
 or $\frac{2}{5}$, $x = 2$ and $r = 5$. Find y.

$$y = \sqrt{r^2 - x^2}$$

$$= \sqrt{5^2 - 2^2}$$

$$= \sqrt{21}$$

Use x = 2, $y = \sqrt{21}$, and r = 5 to write the five remaining trigonometric ratios. $\sin \theta = \frac{y}{r}$ or $\frac{\sqrt{21}}{5}$ $\csc \theta = \frac{r}{y} = \frac{5}{\sqrt{21}}$ or $\frac{5\sqrt{21}}{21}$ $\tan \theta = \frac{y}{x}$ or $\frac{\sqrt{21}}{2}$ $\cot \theta = \frac{x}{y} = \frac{2}{\sqrt{21}}$ or $\frac{2\sqrt{21}}{21}$ $\sec \theta = \frac{r}{x}$ or $\frac{5}{2}$

31.
$$\sin\theta = -\frac{5}{13}$$
, where $\cos\theta > 0$ and $\cot\theta < 0$

SOLUTION:

 $\sin\theta = -\frac{5}{13}$, where $\cos\theta > 0$ and $\cot\theta < 0$

To find the other function values, find the coordinates of a point on the terminal side of θ . Because $\cos \theta$ is positive and $\cot \theta$ is negative, θ must lie in Quadrant IV. This means that *x* is positive and *y* is negative.

Because
$$\sin \theta = \frac{y}{r}$$
 or $-\frac{5}{13}$, $y = -5$ and $r = 13$. Find x.
 $x = \sqrt{r^2 - y^2}$
 $= \sqrt{13^2 - (-5)^2}$
 $= \sqrt{144}$ or 12

Use x = 12, y = -5, and r = 13 to write the five remaining trigonometric ratios.

$$\cos\theta = \frac{x}{r} \text{ or } \frac{12}{13} \qquad \sec\theta = \frac{x}{r} \text{ or } \frac{13}{12}$$
$$\tan\theta = \frac{y}{x} \text{ or } -\frac{5}{12} \qquad \cot\theta = \frac{x}{y} \text{ or } -\frac{12}{5}$$
$$\csc\theta = \frac{r}{y} \text{ or } -\frac{13}{5}$$

Find the exact value of each expression. If undefined, write undefined.

33. sin 180°

SOLUTION:

Because the terminal side of θ lies on the negative x-axis, the reference angle θ ' is π .

$$\sin\frac{0}{1} = 0$$

35. sec 450°

SOLUTION:

Because the terminal side of θ lies on the positive y-axis, the reference angle θ ' is 90°.

 $\sec 450^\circ = \sec 90^\circ$ = $\frac{1}{0}$ or undefined

- 67. **CONSTRUCTION** A construction company is installing a three-foot-high wheelchair ramp onto a landing outside of an office. The angle of the ramp must be 4°.
 - **a.** What is the length of the ramp?
 - **b.** What is the slope of the ramp?

SOLUTION:

a. We are given the angle and the height opposite the angle. Draw a diagram.

We need to find the length of the ramp, so we can use the tangent function.

 $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$ $\tan 4 = \frac{3}{x}$ $x \tan 4 = 3$ $x = \frac{3}{\tan 4}$ $x \approx 42.9$

b. The slope is equal to the rise over the run. One coordinate is (0, 0) and another coordinate is (43, 3).

slope = $\frac{\text{rise}}{\text{run}}$ = $\frac{3-0}{43-0}$ = $\frac{3}{43}$ ≈ 0.07

68. **NATURE** For a photography project, Maria is photographing deer from a tree stand. From her sight 30 feet above the ground, she spots two deer in a straight line, as shown below. How much farther away is the second deer than the first?

SOLUTION:

Draw a diagram of the situation.

The 40° and 60° angles shown are equal to the angles in the original picture because they are alternate interior angles.

We can use trigonometry to find x and y and then find y - x, which is the distance between the deer.

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$
$$\tan 60 = \frac{30}{x}$$
$$x \tan 60 = 30$$
$$x = \frac{30}{\tan 60}$$
$$\tan 40 = \frac{30}{y}$$
$$y \tan 40 = 30$$
$$y = \frac{30}{\tan 40}$$
$$y - x = \frac{30}{\tan 40} - \frac{30}{\tan 60}$$
$$y - x \approx 18.4$$

69. **FIGURE SKATING** An Olympic ice skater performs a routine in which she jumps in the air for 2.4 seconds while spinning 3 full revolutions.

a. Find the angular speed of the figure skater.

b. Express the angular speed of the figure skater in degrees per minute.

SOLUTION:

a. The rate at which an object rotates about a fixed point is its angular speed. The angular speed is given by $\omega = \frac{\theta}{r}$.

Each rotation requires 2π radians, so $\theta = 6\pi$.

 $\omega = \frac{\theta}{t}$ $= \frac{6\pi}{2.4}$ $= 2.5\pi$

The angular speed is 2.5π radians per second.

b. Convert the seconds to minutes then convert the radians to degrees.

 2.5π radians <u>60 seconds</u> <u>150\pi</u> radians

second	1 minute	minute
150π radians	180 degrees	27,000 degrees

minute radian minute The angular speed is about 27,000 degrees per minute.

71. **WORLD'S FAIR** The first Ferris wheel had a diameter of 250 feet and took 10 minutes to complete one full revolution.

a. How many degrees would the Ferris wheel rotate in 100 seconds?

b. How far has a person traveled if she has been on the Ferris wheel for 7 minutes?

c. How long would it take for a person to travel 200 feet?

SOLUTION:

a. One complete revolution is done in 10 minutes, so divide 100 seconds by 10 minutes to determine the fraction of a revolution that has been completed in 100 seconds.

10 minutes = 600 seconds

$$\frac{100}{600} = \frac{1}{6}$$

One sixth of a revolution is equal to $\frac{360}{6}$ or 60 degrees.

b. If someone has been on it for 7 minutes, then they have made $\frac{7}{10}$ of a revolution. The wheel has a diameter of

250 feet, so the circumference is 250π feet. After 7 minutes, $\frac{7}{10}$ of the circumference has been traveled.

 $\frac{7}{10}(250\pi) = 175\pi$

They have traveled about 550 feet.

c. It takes 10 minutes to travel the circumference, or 250π feet. Use a proportion to solve for t.

 $\frac{250\pi}{10} = \frac{200}{t}$ $2000 = 250\pi t$ $\frac{2000}{250\pi} = t$ $\frac{8}{\pi} = t$ $2.5 \approx t$

It would take about 2.5 minutes to travel 200 feet.