Chapter 6: Matrices
Topics: Addition and scalar multiplication, matrix multiplication, word problems, find determinant, verify and find inverse matrices, solve a system using matrices and inverses

$$
A=\left[\begin{array}{lll}
4 & 1 & -3 \\
0 & 2 & 8
\end{array}\right] \quad B=\left[\begin{array}{ll}
2 & 1 \\
0 & 1 \\
3 & -2
\end{array}\right] \quad C=\left[\begin{array}{lll}
-1 & 9 & -6 \\
7 & 5 & 0
\end{array}\right] \quad D=\left[\begin{array}{cc}
7 & 2 \\
-4 & -1
\end{array}\right] \quad E=\left[\begin{array}{cc}
0 & -2 \\
1 & 3
\end{array}\right]
$$

Use the matrices above to solve \#1-6 by hand and then check your answers on a graphing calculator.

1. $\mathrm{A}+\mathrm{C}$
2. $\mathrm{A}+\mathrm{D}$
3. $3 \mathrm{E}+\mathrm{D}$
4. AB
5. AD
6. DA
7. Solve for the variable x and y .
8. Solve for the variable a and b.

$$
\left[\begin{array}{cc}
2 & x \\
y & -1
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{l}
19 \\
17
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
4 & 5 \\
-1 & a
\end{array}\right] \cdot\left[\begin{array}{cc}
-2 & 3 \\
b & 4
\end{array}\right]=\left[\begin{array}{cc}
12 & 32 \\
26 & 21
\end{array}\right]
$$

9. Find the determinant and inverse by hand (if it exists):
a)
$M=\left[\begin{array}{ll}3 & -4 \\ 2 & -5\end{array}\right]$
b) $\quad N=\left[\begin{array}{cc}4 & 12 \\ -2 & -6\end{array}\right]$
10.

Find the determinant and inverse of matrix R using a graphing calculator:

$$
R=\left[\begin{array}{ccc}
-3 & 1 & 5 \\
2 & 4 & 7 \\
-1 & 3 & -2
\end{array}\right]
$$

11. Solve the system of equations by hand using matrices. Check your answer with a graphing calculator using matrices.

$$
\left\{\begin{array}{l}
2 x-3 y=-1 \\
-3 x+5 y=3
\end{array}\right.
$$

12. Solve the system of equations using matrices and a graphing calculator.

$$
\left\{\begin{array}{l}
2 x-5 y+3 z=9 \\
4 x+y-6 z=35 \\
-3 x+9 y-7 z=-6
\end{array}\right.
$$

13. For each word problem below, write a system of equations, set up a matrix equation, and then solve using matrices.
a) At a fruit stand, Josh bought 12 apples and 4 bananas for $\$ 10.56$. Dennis bought 6 apples and 10 bananas for $\$ 8.88$. Find the cost of one apple and one banana.
b) For a school fund raiser, David is selling cookie dough for $\$ 4.05 /$ package, wrapping paper for $\$ 3.20 / \mathrm{roll}$ and coupon books for $\$ 8.50 /$ book. He sold a total of 15 items and turned in $\$ 68.15$. If he sold 4 more rolls of wrapping paper than coupon books, how many of each item did he sell?
c) An ice cream shop sells single scoop cones for $\$ 2.45$, double scoop cones for $\$ 3.10$, and triple scoop cones for $\$ 3.75$. One day, Hannah sells 29 cones total. She sold 5 times as many single cones as triple cones. If she sold $\$ 82.10$ of ice cream, how many double scoop cones did she sell?
14. Write a matrix equation and then solve using matrices:

Scores at a skating competition are calculated by the weights below.
If a pair of skaters are awarded the scores at right, find their final score for the competition.

Category	Lifts	Jumps	Spins	Technique
Weight	20%	25%	30%	25%

Category	Scores
Lifts	5
Jumps	6
Spins	3
Technique	4

