Study Guide and Review

Choose the correct term from the list to complete each sentence.
axis of symmetry center
conic section conjugate axis
co-vertices degenerate conic
directrix eccentricity
ellipse foci
focus hyperbola
locus major axis
minor axis orientation
parabola parameter
parametric curve
parametric equation
transverse axis vertex vertices

1. A \qquad is a figure formed when a plane intersects a double-napped right cone.

SOLUTION:
conic section
ANSWER:
conic section
2. A circle is the \qquad of points that fulfill the property that all points be in a given plane and a specified distance from a given point.

SOLUTION:
locus
ANSWER:
locus
3. The \qquad of a parabola is perpendicular to its axis of symmetry.

SOLUTION:
directrix
ANSWER:
directrix
4. The co-vertices of $\mathrm{a}(\mathrm{n})$ \qquad lie on its minor axis, while the vertices lie on its major axis.

SOLUTION:
ellipse
ANSWER:
ellipse

Study Guide and Review

5. From any point on an ellipse, the sum of the distances to the \qquad of the ellipse remains constant.

SOLUTION:
foci
ANSWER:
foci
6. The \qquad of an ellipse is a ratio that determines how "stretched" or "circular" the ellipse is. It is found using the ratio $\frac{c}{a}$.

SOLUTION:
eccentricity
ANSWER:
eccentricity
7. The \qquad of a circle is a single point, and all points on the circle are equidistant from that point.

SOLUTION:
center
ANSWER:
center
8. Like an ellipse, a \qquad has vertices and foci, but it also has a pair of asymptotes and does not have a connected graph.

SOLUTION:
hyperbola
ANSWER:
hyperbola

Study Guide and Review

For each equation, identify the vertex, focus, axis of symmetry, and directrix. Then graph the parabola.
11. $(x+3)^{2}=12(y+2)$

SOLUTION:
$(x+3)^{2}=12(y+2)$
The equation is in standard form and the squared term is x, which means that the parabola opens vertically. The equation is in the form $(x-h)^{2}=4 p(y-k)$, so $h=-3$ and $k=-2$. Because $4 p=12$ and $p=3$, the graph opens up. Use the values of h, k, and p to determine the characteristics of the parabola.

```
vertex: (-3, -2)
(h,k)
directrix: y = -5
y=k-p
focus: (-3,1) (h,k+p)
axis of symmetry: }x=-3\quadx=
```

Graph the vertex, focus, axis, and directrix of the parabola. Then make a table of values to graph the general shape of the curve.

ANSWER:
vertex: $(-3,-2)$, focus: $(-3,1)$; axis of symmetry: $x=-3$; directrix: $y=-5$

Study Guide and Review

12. $(y-2)^{2}=8(x-5)$

SOLUTION:
$(y-2)^{2}=8(x-5)$
The equation is in standard form and the squared term is y, which means that the parabola opens horizontally. The equation is in the form $(y-k)^{2}=4 p(x-h)$, so $h=5$ and $k=2$. Because $4 p=8$ and $p=2$, the graph opens to the right. Use the values of h, k, and p to determine the characteristics of the parabola.

```
vertex: (5, 2)
\[
(h, k)
\]
(h,k)
directrix: }x=
focus: (7, 2)
axis of symmetry: }y=
\[
\begin{aligned}
& x=h-p \\
& (h+p, k) \\
& y=k
\end{aligned}
\]
```

Graph the vertex, focus, axis, and directrix of the parabola. Then make a table of values to graph the general shape of the curve.

ANSWER:
vertex: (5, 2), focus: (7,2); axis of symmetry: $y=2$; directrix: $x=3$

Study Guide and Review

13. $(x-2)^{2}=-4(y+1)$

SOLUTION:
$(x-2)^{2}=-4(y+1)$
The equation is in standard form and the squared term is x, which means that the parabola opens vertically. The equation is in the form $(x-h)^{2}=4 p(y-k)$, so $h=2$ and $k=-1$. Because $4 p=-4$ and $p=-1$, the graph opens down. Use the values of h, k, and p to determine the characteristics of the parabola.

```
vertex: (2, -1)
directrix: y = 0
(h,k)
y=k-p
focus: (2,-2)
axis of symmetry: x=2
(h,k+p)
x=h
```

Graph the vertex, focus, axis, and directrix of the parabola. Then make a table of values to graph the general shape of the curve.

ANSWER:
vertex: (2, -1), focus: (2, -2); axis of symmetry: $x=2$; directrix: $y=0$

Study Guide and Review

14. $(x-5)=\frac{1}{12}(y-3)^{2}$

SOLUTION:
$(x-5)=\frac{1}{12}(y-3)^{2}$
The equation is in standard form and the squared term is y, which means that the parabola opens horizontally. The equation is in the form $(y-k)^{2}=4 p(x-h)$, so $h=5$ and $k=3$. Because $4 p=\frac{1}{12}$ and $p=\frac{1}{48}$, the graph opens to the right. Use the values of h, k, and p to determine the characteristics of the parabola.

$$
\begin{array}{ll}
\text { vertex: }(5,3) & (h, k) \\
\text { directrix: } x=2 \frac{47}{48} & x=h-p \\
\text { focus: }\left(5 \frac{1}{48}, 3\right) & (h+p, k) \\
\text { axis of symmetry: } y=3 & y=k
\end{array}
$$

Graph the vertex, focus, axis, and directrix of the parabola. Then make a table of values to graph the general shape of the curve.

ANSWER:
vertex: $(5,3)$, focus: $\left(\frac{241}{48}, 3\right)$; axis of symmetry: $y=3$; directrix: $x=2$

Study Guide and Review

Write an equation for and graph a parabola with the given focus \boldsymbol{F} and vertex \boldsymbol{V}.
15. $F(1,1), V(1,5)$

SOLUTION:
Because the focus and vertex share the same x-coordinate, the graph is vertical. The focus is $(h, k+p)$, so the value of p is $1-5$ or -4 .

Because p is negative, the graph opens down. Write the equation for the parabola in standard form using the values of h, p, and k.

$$
\begin{aligned}
4 p(y-k) & =(x-h)^{2} \\
4(-4)(y-5) & =(x-1)^{2} \\
-16(y-5) & =(x-1)^{2}
\end{aligned}
$$

The standard form of the equation is $(x-1)^{2}=-16(y-5)$.
Graph the vertex and focus. Then make a table of values to graph the parabola.

ANSWER:
$(x-1)^{2}=-16(y-5)$

Study Guide and Review

16. $F(-3,6), V(7,6)$

SOLUTION:
Because the focus and vertex share the same y-coordinate, the graph is horizontal. The focus is ($h+p, k$), so the value of p is $-3-7$ or -10 . Because p is negative, the graph opens to the left.

Write the equation for the parabola in standard form using the values of h, p, and k.

$$
\begin{aligned}
& (y-h)^{2}=4 p(x-k) \\
& (y-6)^{2}=4(-10)(x-7) \\
& (y-6)^{2}=-40(x-7)
\end{aligned}
$$

The standard form of the equation is $(y-6)^{2}=-40(x-7)$.
Graph the vertex and focus. Then make a table of values to graph the parabola.

ANSWER:
$(y-6)^{2}=-40(x-7)$

Study Guide and Review

17. $F(-2,-3), V(-2,1)$

SOLUTION:

Because the focus and vertex share the same x-coordinate, the graph is vertical. The focus is ($h, k+p$), so the value of p is $-3-1$ or -4 . Because p is negative, the graph opens down.

Write the equation for the parabola in standard form using the values of h, p, and k.

$$
\begin{aligned}
4 p(y-k) & =(x-h)^{2} \\
4(-4)(y-1) & =[x-(-2)]^{2} \\
-16(y-1) & =(x+2)^{2}
\end{aligned}
$$

The standard form of the equation is $(x+2)^{2}=-16(y-1)$.
Graph the vertex and focus. Then make a table of values to graph the parabola.

ANSWER:

Study Guide and Review

18. $F(3,-4), V(3,-2)$

SOLUTION:
$F(3,-4), V(3,-2)$
Because the focus and vertex share the same x-coordinate, the graph is vertical. The focus is $(h, k+p)$, so the value of p is $-4-(-2)$ or -2 . Because p is negative, the graph opens down.

Write the equation for the parabola in standard form using the values of h, p, and k.

$$
\begin{aligned}
4 p(y-k) & =(x-h)^{2} \\
4(-2)[y-(-2)] & =(x-3)^{2} \\
-8(y+2) & =(x-3)^{2}
\end{aligned}
$$

The standard form of the equation is $(x-3)^{2}=-8(y+2)$.
Graph the vertex and focus. Then make a table of values to graph the parabola.

ANSWER:
$(x-3)^{2}=-8(y+2)$

Study Guide and Review

Write an equation for and graph each parabola with focus \boldsymbol{F} and the given characteristics.
19. $F(-4,-4)$; concave left; contains $(-7,0)$

SOLUTION:
Because the parabola opens to the left, the vertex is $(-4-p,-4)$. Use the standard form of the equation of a horizontal parabola and the point $(-7,0)$ to find the equation.

$$
\begin{aligned}
4 p(x-h) & =(y-k)^{2} \\
4 p[-7-(-4-p)] & =[0-(-4)]^{2} \\
4 p(-3+p) & =16 \\
p(-3+p) & =4 \\
p^{2}-3 p & =4 \\
p^{2}-3 p-4 & =0 \\
(p-4)(p+1) & =0 \\
p & =-1 \text { or } 4
\end{aligned}
$$

Because the parabola opens to the left, the value of p must be negative. Therefore, $p=-1$. The vertex is $(-3,-4)$ and the standard form of the equation is $(y+4)^{2}=-4(x+3)$.

Use a table of values to graph the parabola.

ANSWER:
$(y+4)^{2}=-4(x+3)$

Study Guide and Review

20. $F(-1,4)$; concave down; contains $(7,-2)$

SOLUTION:

Because the parabola opens down, the vertex is $(-1,4-p)$. Use the standard form of the equation of a horizontal parabola and the point $(7,-2)$ to find the equation.

$$
\begin{aligned}
4 p(y-k) & =(x-h)^{2} \\
4 p[-2-(4-p)] & =[7-(-1)]^{2} \\
4 p(-6+p) & =64 \\
p(-6+p) & =16 \\
p^{2}-6 p & =16 \\
p^{2}-6 p-16 & =0 \\
(p-8)(p+2) & =0 \\
p & =8 \text { or }-2
\end{aligned}
$$

Because the parabola opens down, the value of p must be negative. Therefore, $p=-2$. The vertex is $(-1,6)$, and the standard form of the equation is $(x+1)^{2}=-8(y-6)$.

Use a table of values to graph the parabola.

ANSWER:
$(x+1)^{2}=-8(y-6)$

Study Guide and Review

21. $F(3,-6)$; concave up; contains $(9,2)$

SOLUTION:

Because the parabola opens up, the vertex is ($3,-6-p$). Use the standard form of the equation of a horizontal parabola and the point $(9,2)$ to find the equation.

$$
\begin{aligned}
4 p(y-k) & =(x-h)^{2} \\
4 p[2-(-6-p)] & =(9-3)^{2} \\
4 p(8+p) & =36 \\
p(8+p) & =9 \\
p^{2}+8 p & =9 \\
p^{2}+8 p-9 & =0 \\
(p+9)(p-1) & =0 \\
p & =-9 \text { or } 1
\end{aligned}
$$

Because the parabola opens up, the value of p must be positive. Therefore, $p=1$. The vertex is $(3,-7)$, and the standard form of the equation is $(x-3)^{2}=4(y+7)$.

Use a table of values to graph the parabola.

ANSWER:

