Study Guide and Review

Graph the hyperbola given by each equation.
30. $\frac{(y+3)^{2}}{30}-\frac{(x-6)^{2}}{8}=1$

SOLUTION:
The equation is in standard form, and $h=6$ and $k=-3$. Because $a^{2}=30$ and $b^{2}=8, a=\sqrt{30} \approx 5.5$ and $b=\sqrt{8}$. The values of a and b can be used to find c.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =(\sqrt{30})^{2}+(\sqrt{8})^{2} \\
c^{2} & =30+8 \\
c & =\sqrt{38} \approx 6.2
\end{aligned}
$$

Use h, k, a, b, and c to determine the characteristics of the hyperbola.
orientation: In the standard form of the equation, the x-term is being subtracted. Therefore, the orientation of the hyperbola is vertical.
center: $(h, k)=(6,-3)$
vertices: $(h, k \pm a)=(6,2.5)$ and $(6,-8.5)$
foci: $(h, k \pm c)=(6,3.2)$ and $(6,-9.2)$
asymptotes:

$$
\begin{aligned}
y-k & = \pm \frac{a}{b}(x-h) \\
y-(-3) & = \pm \frac{\sqrt{30}}{2 \sqrt{2}}(x-6) \\
y+3 & = \pm \frac{\sqrt{15}}{2}(x-6) \\
y+3 & = \pm\left[\frac{\sqrt{15}}{2} x-3 \sqrt{15}\right] \\
y & = \pm\left[\frac{\sqrt{15}}{2} x-3 \sqrt{15}\right]-3 \\
y & =\frac{\sqrt{15}}{2} x-3 \sqrt{15}-3 \text { OR } \\
y & =-\frac{\sqrt{15}}{2} x+3 \sqrt{15}-3
\end{aligned}
$$

Graph the center, vertices, foci, and asymptotes. Then make a table of values to sketch the hyperbola.

Study Guide and Review

31. $\frac{(x+7)^{2}}{18}-\frac{(y-6)^{2}}{36}=1$

SOLUTION:
$\frac{(x+7)^{2}}{18}-\frac{(y-6)^{2}}{36}=1$
The equation is in standard form, and $h=-7$ and $k=6$. Because $a^{2}=18$ and $b^{2}=36, a=\sqrt{18} \approx 4.2$ and $b=6$. The values of a and b can be used to find c.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =18+36 \\
c^{2} & =54 \\
c & =\sqrt{54} \approx 7.3
\end{aligned}
$$

Use h, k, a, b, and c to determine the characteristics of the hyperbola.
orientation: In the standard form of the equation, the y-term is being subtracted. Therefore, the orientation of the hyperbola is horizontal.
center: $(h, k)=(-7,6)$
vertices: $(h \pm a, k)=(-11.2,6)$ and $(-2.8,6)$
foci: $(h \pm c, k)=(0.3,6)$ and $(-14.3,6)$
asymptotes:

$$
\begin{aligned}
y-k & = \pm \frac{b}{a}(x-h) \\
y-6 & = \pm \frac{6}{3 \sqrt{2}}(x-[-7]) \\
y-6 & = \pm \sqrt{2}(x+7) \\
y-6 & = \pm[\sqrt{2} x+7 \sqrt{2}] \\
y & = \pm[\sqrt{2} x+7 \sqrt{2}]+6 \\
y & =[\sqrt{2} x+7 \sqrt{2}+6 \text { OR } \\
y & =-[\sqrt{2} x-7 \sqrt{2}+6
\end{aligned}
$$

Graph the center, vertices, foci, and asymptotes. Then make a table of values to sketch the hyperbola.

Study Guide and Review

ANSWER:

32. $\frac{(y-1)^{2}}{4}-(x+1)^{2}=1$

SOLUTION:
$\frac{(y-1)^{2}}{4}-(x+1)^{2}=1$
The equation is in standard form, and $h=-1$ and $k=1$. Because $a^{2}=4$ and $b^{2}=1, a=2$ and $b=1$. The values of a and b can be used to find c.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =4+1 \\
c^{2} & =5 \\
c & =\sqrt{5} \approx 2.2
\end{aligned}
$$

Use h, k, a, b, and c to determine the characteristics of the hyperbola.
orientation: In the standard form of the equation, the x-term is being subtracted. Therefore, the orientation of the hyperbola is vertical.
center: $(h, k)=(-1,1)$
vertices: $(h, k \pm a)=(-1,3)$ and $(-1,-1)$
foci: $(h, k \pm c)=(-1,3.2)$ and $(-1,-1.2)$
asymptotes:

Study Guide and Review

$$
\begin{aligned}
y-\bar{k} & = \pm \frac{a}{b}(x-h) \\
y-1 & = \pm \frac{2}{1}(x-[-1]) \\
y-1 & = \pm 2(x+1) \\
y-1 & = \pm[2 x+2] \\
y & = \pm[2 x+2]+1 \\
y & =2 x+3 \text { OR } \\
y & =-2 x-1
\end{aligned}
$$

Graph the center, vertices, foci, and asymptotes. Then make a table of values to sketch the hyperbola.

ANSWER:

33. $x^{2}-y^{2}-2 x+4 y-7=0$

SOLUTION:

Convert the equation to standard form.

$$
\begin{array}{r}
x^{2}-y^{2}-2 x+4 y-7=0 \\
x^{2}-2 x+1-\left(y^{2}-4 y+4\right)-7-1+4=0 \\
(x-1)^{2}-(y-2)^{2}=4 \\
\frac{(x-1)^{2}}{4}-\frac{(y-2)^{2}}{4}=1
\end{array}
$$

The equation is in standard form, and $h=1$ and $k=2$. Because $a^{2}=4$ and $b^{2}=4, a=2$ and $b=2$. The values of a and b can be used to find c.

$$
c^{2}=a^{2}+b^{2}
$$

Study Guide and Review

$$
\begin{aligned}
c^{2} & =4+4 \\
c^{2} & =8 \\
c & =\sqrt{8} \approx 2.8
\end{aligned}
$$

Use h, k, a, b, and c to determine the characteristics of the hyperbola.
orientation: In the standard form of the equation, the y-term is being subtracted. Therefore, the orientation of the hyperbola is horizontal.
center: $(h, k)=(1,2)$
vertices: $(h \pm a, k)=(-1,2)$ and $(3,2)$
foci: $(h \pm c, k)=(-1.8,2)$ and $(3.8,2)$
asymptotes:

$$
\begin{aligned}
y-k & = \pm \frac{b}{a}(x-h) \\
y-2 & = \pm \frac{2}{2}(x-1) \\
y-2 & = \pm(x-1) \\
y & = \pm[x+1]+2 \\
y & =x+3 \text { OR } \\
y & =-x+1
\end{aligned}
$$

Graph the center, vertices, foci, and asymptotes. Then make a table of values to sketch the hyperbola.

ANSWER:

Study Guide and Review

Write an equation for the hyperbola with the given characteristics.

34 . vertices $(7,0),(-7,0)$; conjugate axis length of 8
SOLUTION:
Because the y-coordinates of the vertices are the same, the transverse axis is horizontal, and the standard form of the equation is $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$.

The center is the midpoint of the segment between the vertices, or $(0,0)$. So, $h=0$ and $k=0$. The length of the conjugate axis of a hyperbola is $2 b$. So, $2 b=8, b=4$, and $b^{2}=16$. You can find a by determining the distance from a vertex to the center. One vertex is located at $(7,0)$, which is 7 units from $(0,0)$. So, $a=7$.

Using the values of h, k, a, and b, the equation for the hyperbola is $\frac{x^{2}}{49}-\frac{y^{2}}{16}=1$.
ANSWER:
$\frac{x^{2}}{49}-\frac{y^{2}}{16}=1$
35. foci $(0,5),(0,-5)$; vertices $(0,3),(0,-3)$

SOLUTION:
Because the y-coordinates of the vertices are the same, the transverse axis is horizontal, and the standard form of the equation is $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$.

The center is the midpoint of the segment between the foci, or $(0,0)$. So, $h=0$ and $k=0$. You can find c by determining the distance from a focus to the center. One focus is located at $(0,5)$, which is 5 units from $(0,0)$. So, c $=5$ and $c^{2}=25$. You can find a by determining the distance from a vertex to the center. One vertex is located at $(0$, 3), which is 3 units from (0,0). So, $a=3$ and $a^{2}=9$.

Now you can use the values of c and a to find b.

$$
\begin{aligned}
b^{2} & =c^{2}-a^{2} \\
b^{2} & =25-9 \\
b^{2} & =16 \\
b & =4
\end{aligned}
$$

Using the values of h, k, a, and b, the equation for the hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$.
ANSWER:
$\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$

Study Guide and Review

36. foci $(1,15),(1,-5)$; transverse axis length of 16

SOLUTION:

Because the x-coordinates of the foci are the same, the transverse axis is vertical, and the standard form of the equation is $\frac{(y-h)^{2}}{a^{2}}-\frac{(x-k)^{2}}{b^{2}}=1$.

The center is the midpoint of the segment between the foci, or $(1,5)$. So, $h=-1$ and $k=-5$. You can find c by determining the distance from a focus to the center. One focus is located at $(1,15)$, which is 10 units from (1,5). So, $c=10$ and $c^{2}=100$. The length of the transverse axis is 16 , so $a=8$ and $a^{2}=64$.

Now you can use the values of c and a to find b.

$$
\begin{aligned}
b^{2} & =c^{2}-a^{2} \\
b^{2} & =100-64 \\
b^{2} & =36 \\
b & =6
\end{aligned}
$$

Using the values of h, k, a, and b, the equation for the hyperbola is $\frac{(y-5)^{2}}{64}-\frac{(x-1)^{2}}{36}=1$.
ANSWER:
$\frac{(y-5)^{2}}{64}-\frac{(x-1)^{2}}{36}=1$
37. vertices $(2,0),(-2,0)$; asymptotes $y= \pm \frac{3}{2} x$

SOLUTION:
Because the y-coordinates of the foci are the same, the transverse axis is horizontal, and the standard form of the equation is $\frac{(x-k)^{2}}{a^{2}}-\frac{(y-h)^{2}}{b^{2}}=1$.

The center is the midpoint of the segment between the vertices, or $(0,0) . S o, h=0$ and $k=0$. To find a, determine the distance from a vertex to the center. One vertex is located at (2,0), which is 2 units from (0,0). So, $a=2$ and a^{2} $=4$. Because the slopes of the asymptotes are $\pm \frac{b}{a}$, using the positive slope $\frac{3}{2}, b=3$ and $b^{2}=9$.

Using the values of h, k, a, and b, the equation for the hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$.
ANSWER:
$\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$

Study Guide and Review

Use the discriminant to identify each conic section.
38. $x^{2}-4 y^{2}-6 x-16 y-11=0$

SOLUTION:

$$
\begin{aligned}
B^{2}-4 A C & =0-4(1)(-4) \\
& =16
\end{aligned}
$$

The discriminant is greater than 0 , so the conic is a hyperbola.
ANSWER:
hyperbola
39. $4 y^{2}-x-40 y+107=0$

SOLUTION:

$$
\begin{aligned}
B^{2}-4 A C & =0-0(4) \\
& =0
\end{aligned}
$$

The discriminant is 0 , so the conic is a parabola.
ANSWER:
parabola
40. $9 x^{2}+4 y^{2}+162 x+8 y+732=0$

SOLUTION:

$$
\begin{aligned}
B^{2}-4 A C & =0-4(9)(4) \\
& =-144
\end{aligned}
$$

The discriminant is less than 0 and $A \neq C$, so the conic is an ellipse.
ANSWER:
ellipse
56. MONUMENTS The St. Louis Arch is in the shape of a catenary, which resembles a parabola.
a. Write an equation for a parabola that would approximate the shape of the arch.
b. Find the location of the focus of this parabola.

SOLUTION:
a. With the vertex at the origin, the parabola goes through $(0,0),(315,-630)$, and $(-315,-630)$. Use a system of

Study Guide and Review

equations to determine a, b, and c in $y=a x^{2}+b x+c$.
$0 a+0 b+0 c=0$
$(315)^{2} a+315 b+0 c=-630$
$(-315)^{2} a-315 b+0 c=-630$
$c=0$

$$
\begin{aligned}
99,225 a+315 b & =-630 \\
+99,225 a=\underline{315 b} & =\underline{-630} \\
\hline 198,450 a & =-1260 \\
a & =\frac{2}{315}
\end{aligned}
$$

Substitute and solve for b.

$$
\begin{aligned}
99,225 \cdot \frac{2}{315}+315 b & =-630 \\
630 b & =-630 \\
b & =-1
\end{aligned}
$$

The equation is $y=-\frac{2}{315} x^{2}+630$.
b. Convert the equation to standard form.

$$
\begin{aligned}
y & =-\frac{2}{315} x^{2}+630 \\
y-630 & =-\frac{2}{315} x^{2} \\
-\frac{315}{2}(y-630) & =x^{2}
\end{aligned}
$$

The value of p is $-\frac{315}{2} \div 4$ or -39.375 . The focus of the parabola is $630-39.375$ or 590.625 feet above the ground.

ANSWER:
a. Sample answer: $y=-\frac{2}{315} x^{2}+630$
b. 590.625 ft above the ground.

Study Guide and Review

58. ENERGY Cooling towers at a power plant are in the shape of a hyperboloid. The cross section of a hyperboloid is a hyperbola.
a. Write an equation for the cross section of a tower that is 50 feet tall and 30 feet wide.
b. If the ratio of the height to the width of the tower increases, how is the equation affected?

SOLUTION:

a. The height of the cross section is 50 feet, which is $2 a$. So, $a=25$ and $a^{2}=625$. The width of the cross section is 30 feet, which is $2 b$. So, $b=15$ and $b^{2}=225$.
The transverse axis is vertical, so the equation for the cross section is $\frac{x^{2}}{225}-\frac{y^{2}}{625}=1$.
b. Sample answer: The ratio of the denominator associated with y to the denominator associated with x will increase.

ANSWER:
a. $\frac{x^{2}}{225}-\frac{y^{2}}{625}=1$
b. Sample answer: The ratio of the denominator associated with y to the denominator associated with x will increase.

