Study Guide and Intervention (continued) 7-3

Hyperbolas

Identify Conic Sections You can determine the type of conic when the equation for the conic is in general form, $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. The discriminant, or $B^2 - 4AC$, can be used to identify a conic when the equation is in general form.

Discriminant	Conic Section
less than 0; $B=0$ and $A=0$	circle
less than 0; $B \neq 0$ or $A \neq C$	ellipse
equal to 0	parabola
greater than 0	hyperbola

Exercises

Use the discriminant to identify each conic section.

1.
$$4x^2 + 4y^2 - 2x - 9y + 1 = 0$$

2.
$$10x^3 + 6y^3 - x + 8y + 1 = 0$$

$$3x - 2x^2 + 6xy + y^2 - 4x - 5y + 2 = 0$$

4.
$$x^2 + 6xy + y^2 - 2x + 1 = 0$$

5.
$$5x^2 + 2xy + 4y^2 + x + 2y + 17 = 0$$

6.
$$x^2 + 2xy + y^3 + x + 10 = 0$$

7.
$$25x^3 + 100x - 54y = -200$$

8.
$$16x^2 + 100x - 54y^2 = -100$$

Exercises

Graph the hyperbola given by each equation.

$$1. \ \frac{x^2}{25} - \frac{y^2}{36} = 1$$

2.
$$\frac{(y-3)^2}{25} - \frac{(x+2)^2}{9} = 1$$
 3. $\frac{(x-1)^2}{16} - \frac{(y+2)^2}{36} = 1$

3.
$$\frac{(x-1)^2}{16} - \frac{(y+2)^2}{36} = 1$$

7-3 Word Problem Practice

Hyperbolas

- 1. **EARTHQUAKES** The epicenter of an earthquake lies on a branch of the hyperbola represented by $\frac{(x-50)^2}{1600} \frac{(y-35)^2}{2500} = 1$, where the seismographs are located at the foci.
 - a. Graph the hyperbola.

- b. Find the locations of the seismographs.
- 2. SHADOWS A lamp projects light onto a wall in the shape of a hyperbola. The edge of the light can be modeled by $\frac{y^2}{196} \frac{x^2}{121} = 1$.
 - a. Graph the hyperbola.

- **b.** Write the equations of the asymptotes.
- c. Find the eccentricity.

3. PARKS A grassy play area is in the shape of a hyperbola, as shown.

a. Write an equation that models the curved sides of the play area.

b. If each unit on the coordinate plane represents 3 feet, what is the narrowest vertical width of the play area?

4. Use the discriminant to identify each conic section.

a.
$$-2x^2 + 6xy + y^2 - 4x - 5y + 2 = 0$$

b.
$$x^2 + 6xy + y^2 - 2x + 1 = 0$$

c.
$$5x^2 + 2xy + 4y^2 + x + 2y + 17 = 0$$

d.
$$x^2 + 2xy + y^2 + x + 10 = 0$$