

1.	Given:	∠1 ≅ ∠2	
		$\overrightarrow{JM} \parallel \overrightarrow{HK}$	

Prove: ΔHMK is isosceles

Statement	Reason
212 22	Given
JM I HK	anen
41=43,42=4	AIA
42243	Transitive Property
13544	Transitive Property
121 and 23, 62 and 24	a
are all int. angles	
AHMK is isosceles	def. of isos.

2. Solve each equation and state the property of equality or arithmetic as a reason to solve the equation.

a.

$$3(x-11)=15$$

Addition Property

$$x = 16$$

 $\frac{1}{3}(x-1) = 9$

Name:

Period:

3. Complete the proof below.

Given: $\triangle ABC$ with exterior angle $\angle BCE$ and $\overrightarrow{CD} \parallel \overrightarrow{AB}$.

Prove: $m \angle 1 + m \angle 2 = \angle BCE$

Statement	Reason	
1. $\overrightarrow{CD} \parallel \overrightarrow{AB}^{\dagger}$	1. Given	
2. $\angle 2$ and $\angle 5$ are alternate interior angles.	2. Definish ANA	
∠1 and ∠4 are alternate interior angles.		
3. $\angle 2 \cong \angle 5$, $\angle 1 \cong \angle 4$	3. A IA Theorem	
4. Lyd Leave VA	4. Definition of Vertical Angles	
5. ∠4 ≅ ∠6	5. Nertical Angles The	
5. ∠1≅∠6	5. Transitive property	
$6. \ m \angle 5 + m \angle 6 = \angle BCE$	6. Addition Angles	
7. $m \angle 1 + m \angle 2 = \angle BCE$	7. Transitive	

#4-5. Write a two-column proof for the statements below. 4. Given: $\angle T \cong \angle L$ and A is a midpoint of \overline{RG} Prove: $\overline{TR} \cong \overline{GL}$ Prove: $APVO \cong \Delta ERO$					
Statement	Reason	Statement	Reason		
Low Town Low Low	GNEN	PO = EO	Given		
Aismp of RG	Given	LPYLE	GNEN		
RATAG	def. of midpoint	10°210	Reflexive		
WARDEN.		APVO = DERO	ASA ast		
CTAR \$ LLAGOR	EVA defof VA	4			
LTARELLAG	VA:Theorem				
DTARY DLAG	AAS Theorem				
Create a flowchart proof.	CPCTC				
6. Given: $\angle FJK \cong \angle HKJ$, $\overline{FJ} \cong \overline{HK}$					
Prove: $\angle F \cong \angle H$	LAFJK= LAHKJ	> AFJK=AHK SAS post			
) K	12K22KI-	/ LFS	4+1		

definition_____
theorem____

7. Define the following terms: postulate