Lesson 8.5 • Areas of Circles

Name	Period	Date
In Exercises 1–4, write your answers in terms of π . 1. If $r = 9$ cm, $A = $	2. If $d = 6.4$ cm, $A = 1$	
3. If $A = 529\pi$ cm ² , $r = $	4. If $C = 36\pi$ cm, $A =$	
In Exercises 5-8, round your answers to the nearest 0.01 unit.		
5. If $r = 7.8$ cm, $A \approx$	6. If $A = 136.46, C \approx$	·
7. If $d = 3.12, A \approx$	8. If $C = 7.85, A \approx $	·

For Exercises 9 and 10, refer to the figure of a circle inscribed in an equilateral triangle. Round your answers to the nearest 0.1 unit.

9. Find the area of the inscribed circle.

 $a \approx 4.04 \text{ cm}$

In Exercises 11 and 12, find the area of the shaded region. Write your answers in terms of π .

11. *ABCD* is a square.

12. The three circles are tangent.

Lesson 8.6 • Any Way You Slice It

Name ______

Period _____ Date ____

In Exercises 1–6, find the area of the shaded region. Write your answers in terms of π and rounded to the nearest 0.01 cm².

