Lesson 8.5•Areas of Circles

Name \qquad Period \qquad Date \qquad

In Exercises 1-4, write your answers in terms of π.

1. If $r=9 \mathrm{~cm}, A=$ \qquad .
2. If $d=6.4 \mathrm{~cm}, A=$.
3. If $A=529 \pi \mathrm{~cm}^{2}, r=$ \qquad .
4. If $C=36 \pi \mathrm{~cm}, A=$ \qquad .

In Exercises 5-8, round your answers to the nearest 0.01 unit.
5. If $r=7.8 \mathrm{~cm}, A \approx$ \qquad .
6. If $A=136.46, C \approx$
7. If $d=3.12, A \approx$ \qquad 8. If $C=7.85, A \approx$ \qquad .

For Exercises 9 and 10, refer to the figure of a circle inscribed in an equilateral triangle. Round your answers to the nearest 0.1 unit.
9. Find the area of the inscribed circle.
10. Find the area of the shaded region.

In Exercises 11 and 12, find the area of the shaded region. Write your answers in terms of π.
11. $A B C D$ is a square.

12. The three circles are tangent.

Lesson 8.6•Any Way You Slice It

Name

\qquad Period \qquad Date \qquad

In Exercises 1-6, find the area of the shaded region. Write your answers in terms of π and rounded to the nearest $0.01 \mathrm{~cm}^{2}$.
1.

2.

3.

4.

5.

6.

7. Shaded area is $40 \pi \mathrm{~cm}^{2}$.

Find r.

8. Shaded area is $54 \pi \mathrm{~cm}^{2}$.

Find x.

9. Shaded area is $51 \pi \mathrm{~cm}^{2}$. The diameter of the larger circle is 20 cm . Find r.

