1a. Find the sine, cosine, and tangent of the given angles.

$$\cos H = \frac{1}{2}$$

$$tan S = 5/12$$

$$\sin H = |2|i\beta$$

b. Find the sine, cosine, and tangent of the given angles.

$$\cos A = \iint \mathcal{L}$$

$$tan B = \sqrt[3]{x}$$

$$\sin A = \chi/Z$$

2a. Solve for the measure of the given angle.

a.
$$\cos A = \frac{6}{7}$$

 $-A = 31.003^{\circ}$

b.
$$tan K = 1$$

c.
$$\sin R = \frac{-1}{2}$$

$$4 = \frac{1}{2}$$

b. Solve for the measure of the given angle.

a.
$$\cos^{-1}\left(\frac{3}{12}\right) = Q$$
 $\angle Q = 75.522$

b.
$$\tan^{-1}\left(\frac{7}{3}\right) = T$$

$$< T = (6.6.80)$$

c.
$$\sin^{-1}\left(\frac{8}{9}\right) = Z$$

$$\angle Z = 62.734^{\circ}$$

3. Find the length of the missing side or measure of the missing angle showing all steps.

a)

$$tan 40 = 18$$

$$X = 18$$

$$+an40$$

b)

c)

$$\sin 30 = \frac{x}{10}$$

$$X = 10 - Sin 36$$

$$Sin x = \frac{30}{40}$$

$$(x = 48.590^{\circ})$$

e)

$$\frac{COS}{+900}55 = \frac{16}{x}$$

$$\chi = 27.895$$

f)

$$tan \times = \frac{14}{19}$$

h)

$$\sin 57 = 83$$

i)

$$\cos x = 9$$

$$X = 62.964$$

4. Juan climbed a hill that was at a 24° angle with the ground. When he reached the top he a direct distance of 57 feet from where he started. What was his altitude above the ground?

$$Sin 24 = \frac{X}{57}$$

5. To land, an airplane will approach an airport at a 4° angle of depression. If the plane is flying at 20,000 ft, find the ground distance from the airport to the point directly below the plane when the pilot begins descending.

$$tan 4 = 20,000$$

mountain as 48°. The mountain is 2500 feet tall. What is the straight line distance from the mountain climber to the top of the mountain? 150° 48°

7. At what height will a ladder rest against a building if it is 14 feet long and the base is placed at angle at 65° with the ground. Draw a diagram and show all work to solve.

A mountain climber, standing at the base of a mountain, estimates the angle of elevation to the top of the

6.

$$\sin 65 = \frac{x}{14}$$

8. A wire anchored to the ground braces a pole. The wire is 20 feet long and is attached to the pole 15 feet from the base of the pole. What angle does the wire make with the ground? Draw a diagram and show all work to solve.

$$COS \times = 15$$
 20
 $(x = 41.41)$

9. Find the area of the triangle.

10. Find the radius of the triangle.

12. Find the area of the shaded region.

$$tan 23 = \frac{19}{x}$$

$$A = \frac{1}{2}(16)(37.694) = 301.552m^2$$

13. Find a, b, and c.

14. Find x, y, z, w, d, m, and k.

$$\left(W = 34^{\circ}\right)$$

$$\left(m = 124^{\circ}\right)$$

Sin 25. 337 =
$$\frac{10}{2}$$

. What are the definitions for tangent, sine, and cosine?

$$tan x = \frac{0}{a}$$