Given A and AB, find B.

$49. A = \begin{bmatrix} 8 & -4 \\ 3 & 6 \end{bmatrix}, AB = \begin{bmatrix} 36 & 48 \\ -24 & 48 \end{bmatrix}$
SOLUTION:
Let $B = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$.
Set up two systems of equations. $AB = A \cdot B$
$\begin{bmatrix} 36 & 48 \\ -24 & 48 \end{bmatrix} = \begin{bmatrix} 8 & -4 \\ 3 & 6 \end{bmatrix} \cdot \begin{bmatrix} w & x \\ y & z \end{bmatrix}$
8w - 4y = 36
3w + 6y = -24
8x - 4z = 48
3x + 6z = 48
Solve for w, y, x , and z .
(5)(3w - 4y - 50) (+)(-8)(3w + 6y24)
(+)(-0)(5%+0y=-24)
24w - 12v - 108
(+) - 24w - 48v = 192
$\frac{(1)}{240} = \frac{40}{40} = \frac{102}{102}$
-500 = -5
8w - 4(-5) = 36
8w + 20 = 36
8w = 16
w=2
Solve the next system.
(3)(8x-4z=48)
(+)(-8)(3x+6z=48)
24x - 12z = 144
(+) - 24x - 48z = -384
-60z = -240
z = 4
8x - 4(4) = 48
8x - 16 = 48
8x = 64
x = 8
$B = \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} 2 & 8 \\ -5 & 4 \end{bmatrix}$

 $50.A = \begin{bmatrix} 5 & 0 & 1 \\ 2 & -3 & 2 \\ 1 & -1 & 4 \end{bmatrix}, AB = \begin{bmatrix} 1 & 4 \\ -16 & -6 \\ -2 & -5 \end{bmatrix}$

SOLUTION:

Matrix *B* must be a 3×2 matrix in order for *AB* to exist.

 $\begin{bmatrix} u & v \end{bmatrix}$ Let $B = \begin{bmatrix} w & x \end{bmatrix}$. $\begin{bmatrix} y & z \end{bmatrix}$ Set up two systems of equations. $AB = A \cdot B$ $\begin{bmatrix} 1 & 4 \\ -16 & -6 \\ -2 & -5 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 1 \\ 2 & -3 & 2 \\ 1 & -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$ 5u + 0w + y = 12u - 3w + 2y = -16u - w + 4v = -25v + 0x + z = 42v - 3x + 2z = -6v - x + 4z = -5Solve the system. 2u - 3w + 2y = -16(+)(-3)(u-w+4y=-2)2u - 3w + 2v = -16(+) - 3u + 3w - 12y = 6-u - 10v = -105u + y = 1y = 1 - 5u-u - 10v = -10-u - 10(1 - 5u) = -10-u - 10 + 50u = -1049u = 0u = 0y = 1 - 5uy = 1 - 5(0)y = 1

u - w + 4y = -20 - w + 4(1) = -2-w = -6w = 6

Now solve the next system.

$$2v - 3x + 2z = -6$$

$$(+)(-3)(v - x + 4z = -5)$$

$$2v - 3x + 2z = -6$$

$$(+) - 3v + 3x - 12z = 15$$

$$-v - 10z = 9$$

$$5v + z = 4$$

$$z = 4 - 5v$$

$$-v - 10z = 9$$

$$-v - 10(4 - 5v) = 9$$

$$-v - 40 + 50v = 9$$

$$49v = 49$$

$$v = 1$$

$$z = 4 - 5v$$

$$z = 4 - 5(1)$$

$$z = -1$$

$$v - x + 4z = -5$$

$$1 - x + 4(-1) = -5$$

$$-x - 3 = -5$$

$$-x = -2$$

$$x = 2$$

$$B = \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 6 & 2 \\ 1 & -1 \end{bmatrix}$$

Find x and y.
51.
$$A = \begin{bmatrix} 2x & -y \\ -3y & 5x \end{bmatrix}, B = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, \text{ and } AB = \begin{bmatrix} -2 \\ 31 \end{bmatrix}$$

SOLUTION:
 $AB = A \cdot B$
 $\begin{bmatrix} -2 \\ 31 \end{bmatrix} = \begin{bmatrix} 2x & -y \\ -3y & 5x \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -2 \end{bmatrix}$
 $-2 = 2x(4) + (-y)(-2)$
 $-2 = 8x + 2y$
 $-1 = 4x + y$
 $-4x - 1 = y$
 $31 = -3y(4) + 5x(-2)$
 $31 = -12y - 10x$
 $31 = -12(-4x - 1) - 10x$
 $31 = 48x + 12 - 10x$
 $19 = 38x$
 $\frac{1}{2} = x$
 $-4(\frac{1}{2}) - 1 = y$
 $-2 - 1 = y$
 $-3 = y$