4-7 The Law of Sines and the Law of Cosines

Solve each triangle. Round to the nearest tenth, if necessary.

3.

SOLUTION:
Because two angles are given, $K=180^{\circ}-\left(40^{\circ}+58^{\circ}\right)$ or 82°. Use the Law of Sines to find j and ℓ.

$$
\begin{array}{rlrl}
\frac{\sin J}{j} & =\frac{\sin K}{k} & \frac{\sin L}{\ell} & =\frac{\sin K}{k} \\
\frac{\sin 40^{\circ}}{j} & =\frac{\sin 82^{\circ}}{25} & \frac{\sin 58^{\circ}}{\ell} & =\frac{\sin 82^{\circ}}{25} \\
25 \sin 40^{\circ} & =j \sin 82^{\circ} & 25 \sin 58^{\circ} & =\ell \sin 82^{\circ} \\
\frac{25 \sin 40^{\circ}}{\sin 82^{\circ}} & =j & \frac{25 \sin 58^{\circ}}{\sin 82^{\circ}} & =\ell \\
16.2 & \approx j & 21.4 \approx \ell
\end{array}
$$

Therefore, $K=82^{\circ}, j \approx 16.2$, and $\ell \approx 21.4$.

4.

SOLUTION:
Because two angles are given, $S=180^{\circ}-\left(62^{\circ}+56^{\circ}\right)$ or 62°. Use the Law of Sines to find r and s.

$$
\begin{array}{rlrl}
\frac{\sin R}{r} & =\frac{\sin Q}{Q} & \frac{\sin S}{s} & =\frac{\sin Q}{q} \\
\frac{\sin 56^{\circ}}{r} & =\frac{\sin 62^{\circ}}{7} & \frac{\sin 62^{\circ}}{s} & =\frac{\sin 62^{\circ}}{7} \\
7 \sin 56^{\circ} & =r \sin 62^{\circ} & 7 \sin 62^{\circ} & =s \sin 62^{\circ} \\
\frac{7 \sin 56^{\circ}}{\sin 62^{\circ}} & =r & \frac{7 \sin 62^{\circ}}{\sin 62^{\circ}} & =s \\
6.6 & \approx r & & \approx s \\
\text { Therefore, } \angle S=62^{\circ}, r \approx 6.6, \text { and } s & \approx 7 .
\end{array}
$$

4-7 The Law of Sines and the Law of Cosines

9. TRAVEL For the initial 90 miles of a flight, the pilot heads 8° off course in order to avoid a storm. The pilot then changes direction to head toward the destination for the remainder of the flight, making a 157° angle to the first flight course.
a. Determine the total distance of the flight.
b. Determine the distance of a direct flight to the destination

SOLUTION:

a. Draw a diagram to model the situation.

Because two angles are given, the missing angle is $180^{\circ}-\left(157^{\circ}+8^{\circ}\right)$ or 15°. Use the Law of Sines to find x.

$$
\frac{\sin 8^{\circ}}{x}=\frac{\sin 15^{\circ}}{90}
$$

$$
\begin{aligned}
& \frac{90 \sin 8^{\circ}}{x}=\sin 15^{\circ} \\
& 90 \sin 8^{\circ}=x \sin 15^{\circ}
\end{aligned}
$$

$$
\frac{90 \sin 8^{\circ}}{\sin 15^{\circ}}=x
$$

$$
48.4 \approx x
$$

Therefore, the distance of the flight is $90+48.4$ or about 138.4 miles.
b. Find the length of the side opposite the 157° angle.

$$
\frac{\sin 157^{\circ}}{x}=\frac{\sin 15^{\circ}}{90}
$$

$$
\frac{90 \sin 157^{\circ}}{x}=\sin 15^{\circ}
$$

$$
90 \sin 157^{\circ}=x \sin 15^{\circ}
$$

$$
\frac{90 \sin 157^{\circ}}{\sin 15^{\circ}}=x
$$

$$
135.9 \approx x
$$

Therefore, the distance of a direct flight is about 135.9 miles.

4-7 The Law of Sines and the Law of Cosines

Find all solutions for the given triangle, if possible. If no solution exists, write no solution. Round side lengths to the nearest tenth and angle measures to the nearest degree.
10. $a=9, b=7, A=108^{\circ}$

SOLUTION:
Draw a diagram of a triangle with the given dimensions.

Notice that A is obtuse and $a>b$ because $9>7$. Therefore, one solution exists. Apply the Law of Sines to find B.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin 108^{\circ}}{9} & =\frac{\sin B}{7} \\
7 \sin 108^{\circ} & =9 \sin B \\
\frac{7 \sin 108^{\circ}}{9} & =\sin B \\
\sin ^{-1}\left(\frac{7 \sin 108^{\circ}}{9}\right) & =B \\
47.71^{\circ} & \approx B
\end{aligned}
$$

Because two angles are now known, $C \approx 180^{\circ}-\left(108^{\circ}+48^{\circ}\right)$ or about 24°. Apply the Law of Sines to find c.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 108^{\circ}}{9} & =\frac{\sin 24^{\circ}}{c} \\
c \sin 108^{\circ} & =9 \sin 24^{\circ} \\
c & =\frac{9 \sin 24^{\circ}}{\sin 108^{\circ}} \\
c & \approx 3.85
\end{aligned}
$$

Therefore, the remaining measures of $\triangle A B C$ are
$B \approx 48^{\circ}, C \approx 24^{\circ}$, and $c \approx 3.9$.
11. $a=14, b=15, A=117^{\circ}$

SOLUTION:

A is obtuse and $a<b$ because $14<15$. Therefore, this problem has no solution.

4-7 The Law of Sines and the Law of Cosines

12. $a=18, b=12, A=27^{\circ}$

SOLUTION:
Draw a diagram of a triangle with the given dimensions.

Notice that A is acute and $a>b$ because $18>12$. Therefore, one solution exists. Apply the Law of Sines to find B.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin 27^{\circ}}{18} & =\frac{\sin B}{12} \\
12 \sin 27^{\circ} & =18 \sin B \\
\frac{12 \sin 27^{\circ}}{18} & =\sin B \\
\sin ^{-1}\left(\frac{12 \sin 27^{\circ}}{18}\right) & =B \\
17.62^{\circ} \approx & \approx
\end{aligned}
$$

Because two angles are now known, $C \approx 180^{\circ}-\left(27^{\circ}+17.62^{\circ}\right)$ or about 135.38°. Apply the Law of Sines to find c.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 27^{\circ}}{18} & =\frac{\sin 135.38^{\circ}}{c} \\
c \sin 27^{\circ} & =18 \sin 135.38^{\circ} \\
c & =\frac{18 \sin 135.38^{\circ}}{\sin 27^{\circ}} \\
c & \approx 27.85
\end{aligned}
$$

Therefore, the remaining measures of $\triangle A B C$ are $B \approx 18^{\circ}, C \approx 135^{\circ}$, and $c \approx 27.8$.

Find two triangles with the given angle measure and side lengths. Round side lengths to the nearest tenth and angle measures to the nearest degree.
19. $A=39^{\circ}, a=12, b=17$

SOLUTION:

A is acute, and $h=17 \sin 39^{\circ}$ or about 10.7. Notice that $a<b$ because $12<17$, and $a>h$ because $12>10.7$. Therefore, two different triangles are possible with the given angle and side measures. Angle B will be acute, and angle B^{\prime} will be obtuse, as shown below.

Make a reasonable sketch of each triangle and apply the Law of Sines to find each solution. Start with the case in which B is acute.

4-7 The Law of Sines and the Law of Cosines

Solution $1 \angle B$ is acute.

Find B.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin 39^{\circ}}{12} & =\frac{\sin B}{17} \\
17 \sin 39^{\circ} & =12 \sin B \\
\frac{17 \sin 39^{\circ}}{12} & =\sin B \\
0.8915 & =\sin B \\
\sin ^{-1}(0.8915) & =B \\
63^{\circ} & \approx B
\end{aligned}
$$

Find C.
$C \approx 180^{\circ}-\left(39^{\circ}+63^{\circ}\right)$

$$
\approx 78^{\circ}
$$

Apply the Law of Sines to find c.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 39^{\circ}}{12} & =\frac{\sin 78^{\circ}}{c} \\
c \sin 39^{\circ} & =12 \sin 78^{\circ} \\
c & =\frac{12 \sin 78^{\circ}}{\sin 39^{\circ}} \\
c & \approx 18.7
\end{aligned}
$$

Solution $2 \angle B$ is obtuse.

Note that $m \angle C B^{\prime} B \cong m \angle C B B^{\prime}$. To find B^{\prime}, find an obtuse angle with a sine that is also 0.8915 . To do this, subtract the measure given by your calculator to nearest degree, 63°, from 180°. Therefore, B^{\prime} is approximately $180^{\circ}-63^{\circ}$ or 117°.
Find C.
$C \approx 180^{\circ}-\left(39^{\circ}+117^{\circ}\right)$
$\approx 24^{\circ}$
Apply the Law of Sines to find c.

4-7 The Law of Sines and the Law of Cosines

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 39^{\circ}}{12} & =\frac{\sin 24^{\circ}}{c} \\
c \sin 39^{\circ} & =12 \sin 24^{\circ} \\
c & =\frac{12 \sin 24^{\circ}}{\sin 39^{\circ}} \\
c & \approx 7.8
\end{aligned}
$$

Therefore, the missing measures for acute $\triangle A B C$ are $B \approx 63^{\circ}, C \approx 78^{\circ}$, and $c \approx 18.7$, while the missing measures for obtuse $\triangle A B^{\prime} C$ are $B^{\prime} \approx 117^{\circ}, C \approx 24^{\circ}$, and c ≈ 7.8.
20. $A=26^{\circ}, a=5, b=9$

SOLUTION:

A is acute, and $h=9 \sin 26^{\circ}$ or about 3.9. Notice that $a<b$ because $5<9$, and $a>h$ because $5>3.9$. Therefore, two different triangles are possible with the given angle and side measures. Angle B will be acute, and angle B^{\prime} will be obtuse, as shown below.

Make a reasonable sketch of each triangle and apply the Law of Sines to find each solution. Start with the case in which B is acute.

Solution $1 \angle B$ is acute.

Find B.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin 26^{\circ}}{5} & =\frac{\sin B}{9} \\
9 \sin 26^{\circ} & =5 \sin B \\
\frac{9 \sin 26^{\circ}}{5} & =\sin B \\
0.2630 & =\sin B \\
\sin ^{-1}(0.2630) & =B \\
52^{\circ} & \approx B
\end{aligned}
$$

Find C.
$C \approx 180^{\circ}-\left(26^{\circ}+52^{\circ}\right)$

$$
\approx 102^{\circ}
$$

Apply the Law of Sines to find c.

4-7 The Law of Sines and the Law of Cosines

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 26^{\circ}}{5} & =\frac{\sin 102^{\circ}}{c} \\
c \sin 26^{\circ} & =5 \sin 102^{\circ} \\
c & =\frac{5 \sin 102^{\circ}}{\sin 26^{\circ}} \\
c & \approx 11.2
\end{aligned}
$$

Solution $2 \angle B$ is obtuse.

Note that $m \angle C B^{\prime} B \cong m \angle C B B^{\prime}$. To find B^{\prime}, find an obtuse angle with a sine that is also 0.2630 . To do this, subtract the measure given by your calculator to nearest degree, 52°, from 180°. Therefore, B^{\prime} is approximately $180^{\circ}-$ 52° or 128°.
Find C.

$$
C \approx 180^{\circ}-\left(26^{\circ}+128^{\circ}\right)
$$

$$
\approx 26^{\circ}
$$

Apply the Law of Sines to find c.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 26^{\circ}}{5} & =\frac{\sin 26^{\circ}}{c} \\
c \sin 26^{\circ} & =5 \sin 26^{\circ} \\
c & =\frac{5 \sin 26^{\circ}}{\sin 26^{\circ}} \\
c & =5.0
\end{aligned}
$$

Therefore, the missing measures for acute $\triangle A B C$ are
$B \approx 52^{\circ}, C \approx 102^{\circ}$, and $c \approx 11.2$, while the missing measures for obtuse $\triangle A B^{\prime} C$ are $B^{\prime} \approx 128^{\circ}, C \approx 26^{\circ}$, and c ≈ 5.0.

4-7 The Law of Sines and the Law of Cosines

26. BOATING The light from a lighthouse can be seen from an 18 -mile radius. A boat is positioned so that it can just see the light from the lighthouse. A second boat is located 25 miles away from the lighthouse and is headed straight toward it, making a 44° angle with the lighthouse and the first boat. Find the distance between the two boats when the second boat enters the radius of the lighthouse light.

SOLUTION:
Draw a diagram to represent the situation.

Due to the information given, use the Law of Sines to solve for B in $\mathrm{r} A B C$.

$$
\begin{aligned}
\frac{\sin B}{A C} & =\frac{\sin C}{A B} \\
\frac{\sin B}{25} & =\frac{\sin 44^{\circ}}{18} \\
\sin B & =\frac{25 \sin 44^{\circ}}{18} \\
B & =\sin ^{-1}\left(\frac{25 \sin 44^{\circ}}{18}\right) \\
B & \approx 74.75^{\circ}
\end{aligned}
$$

So, $A \approx 180^{\circ}-\left(44^{\circ}+74.75^{\circ}\right)$ or about 61.25°.
Notice that $\mathrm{r} A B C$ is an isosceles triangle. Draw an altitude from vertex A to $B C^{\prime}$.

Use the sine function to find x.

$$
\begin{aligned}
\sin 30.625 & =\frac{x}{18} \\
9.17 & \approx x
\end{aligned}
$$

Therefore, the distance between the two boats when the second boat enters the radius of the lighthouse light is 2 (9.17) or about 18.3 miles.

4-7 The Law of Sines and the Law of Cosines

Find the exact value of each expression, if it exists.
73. $\cos ^{-1}-\frac{1}{2}$

SOLUTION:
$\cos ^{-1}-\frac{1}{2}$
Find a point on the unit circle on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with a x-coordinate of $-\frac{1}{2}$.

When $t=\frac{2 \pi}{3}, \cos t=-\frac{1}{2}$. Therefore, $\cos ^{-1}-\frac{1}{2}=\frac{2 \pi}{3}$.
74. $\sin ^{-1} \frac{\sqrt{2}}{2}$

SOLUTION:
Find a point on the unit circle on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with a y-coordinate of $\frac{\sqrt{2}}{2}$.

When $t=\frac{\pi}{4}, \sin t=\frac{\sqrt{2}}{2}$. Therefore, $\sin ^{-1} \frac{\sqrt{2}}{2}=\frac{\pi}{4}$.

4-7 The Law of Sines and the Law of Cosines

Write a polynomial function of least degree with real coefficients in standard form that has the given zeros.
83. $-1,1,5$

SOLUTION:
Using the Linear Factorization Theorem and the zeros $-1,1$, and 5, write $f(x)$ as follows.
$f(x)=a[x-(-1)][x-(1)][x-(5)]$
Let $a=1$. Then write the function in standard form.

$$
\begin{aligned}
f(x) & =(1)(x+1)(x-1)(x-5) \\
& =\left(x^{2}-1\right)(x-5) \\
& =x^{3}-5 x^{2}-x+5
\end{aligned}
$$

Therefore, a function of least degree that has $-1,1$, and 5 , as zeros is $f(x)=x^{3}-5 x^{2}-x+5$ or any nonzero multiple of $f(x)$.
84. $-2,-0.5,4$

SOLUTION:
Using the Linear Factorization Theorem and the zeros $-2,-0.5$, and 4 , write $f(x)$ as follows.
$f(x)=a[x-(-2)][x-(-0.5)][x-(4)]$
Let $a=1$. Then write the function in standard form.

$$
\begin{aligned}
f(x) & =(1)(x+2)(x+0.5)(x-4) \\
& =\left(x^{2}+2.5 x+1\right)(x-4) \\
& =x^{3}-4 x^{2}+2.5 x^{2}-10 x+x-4 \\
& =x^{3}-1.5 x^{2}-9 x-4
\end{aligned}
$$

Multiply the polynomial by 2 so that the coefficient of the x^{2}-term is an integer. Therefore, a function of least degree that has $-2,-0.5$, and 4 , as zeros is $f(x)=2 x^{3}-3 x^{2}-18 x-8$ or any nonzero multiple of $f(x)$.
85. $-3,-2 i, 2 i$

SOLUTION:
Using the Linear Factorization Theorem and the zeros $-3,2 \boldsymbol{i}$, and $-2 \boldsymbol{i}$, write $f(x)$ as follows.
$f(x)=a[x-(-3)][x-(2 i)][x-(-2 i)]$
Let $a=1$. Then write the function in standard form.

$$
\begin{aligned}
f(x) & =(1)(x+3)(x-2 i)(x+2 i) \\
& =(x+3)\left(x^{2}+4\right) \\
& =x^{3}+3 x^{2}+4 x+12
\end{aligned}
$$

Therefore, a function of least degree that has $-3,2 \boldsymbol{i}$, and $-2 \boldsymbol{i}$ as zeros is $f(x)=x^{3}+3 x^{2}+4 x+12$ or any nonzero multiple of $f(x)$.

