$\qquad$

## 1-3 Study Guide and Intervention

## Continuity, End Behavior, and Limits

Continuity A function $f(x)$ is continuous at $x=c$ if it satisfies the following conditions.
(1) $f(x)$ is defined at $c$; in other words, $f(c)$ exists.
(2) $f(x)$ approaches the same function value to the left and right of $c$; in other words, $\lim _{x \rightarrow c} f(x)$ exists.
(3) The function value that $f(x)$ approaches from each side of $c$ is $f(c)$; in other words, $\lim _{x \rightarrow c} f(x)=f(c)$.
Functions that are not continuous are discontinuous. Graphs that are discontinuous can exhibit infinite discontinuity, jump discontinuity, or removable discontinuity (also called point discontinuity).

## Example Determine whether each function is continuous at the given

 $\boldsymbol{x}$-value. Justify using the continuity test. If discontinuous, identify the type of discontinuity as infinite, jump, or removable.
## a. $f(x)=2|x|+3 ; x=2$

(1) $f(2)=7$, so $f(2)$ exists.
(2) Construct a table that shows values for $f(x)$ for $x$-values approaching 2 from the left and from the right.

| $\boldsymbol{x}$ | $\boldsymbol{y}=\boldsymbol{f}(\mathbf{x})$ |
| :---: | :---: |
| 1.9 | 6.8 |
| 1.99 | 6.98 |
| 1.999 | 6.998 |


| $\mathbf{x}$ | $\boldsymbol{y}=\boldsymbol{f}(\mathbf{x})$ |
| :--- | :--- |
| 2.1 | 7.2 |
| 2.01 | 7.02 |
| 2.001 | 7.002 |

The tables show that $y$ approaches 7 as $x$ approaches 2 from both sides.
It appears that $\lim _{x \rightarrow 2} f(x)=7$.
(3) $\lim _{x \rightarrow 2} f(x)=7$ and $f(2)=7$.

The function is continuous at $x=2$.

## Exercises

Determine whether each function is continuous at the given $x$-value. Justify your answer using the continuity test. If discontinuous, identify the type of discontinuity as infinite, jump, or removable.

1. $f(x)=\left\{\begin{array}{c}2 x+1 \text { if } x>2 \\ x-1 \text { if } x \leq 2\end{array} ; x=2\right.$
2. $f(x)=x^{2}+5 x+3 ; x=4$
$\qquad$
$\qquad$

## 1-3 Study Guide and Intervention

(continued)

## Continuity, End Behavior, and Limits

End Behavior The end behavior of a function describes how the function behaves at either end of the graph, or what happens to the value of $f(x)$ as $x$ increases or decreases without bound. You can use the concept of a limit to describe end behavior.

Left-End Behavior (as $x$ becomes more and more negative): $\lim _{x \rightarrow-\infty} f(x)$
Right-End Behavior (as $x$ becomes more and more positive): $\lim _{x \rightarrow \infty} f(x)$
The $f(x)$ values may approach negative infinity, positive infinity, or a specific value.

## Example Use the graph of $f(x)=x^{3}+2$ to describe

 its end behavior. Support the conjecture numerically.As $x$ decreases without bound, the $y$-values also decrease without bound. It appears the limit is negative infinity: $\lim _{x \rightarrow-\infty} f(x)=-\infty$.
As $x$ increases without bound, the $y$-values increase

without bound. It appears the limit is positive infinity:
$\lim _{x \rightarrow \infty} f(x)=\infty$.
Construct a table of values to investigate function values as $|x|$ increases.

| $\mathbf{x}$ | -1000 | -100 | -10 | 0 | 10 | 100 | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | $-999,999,998$ | $-999,998$ | -998 | 2 | 1002 | $1,000,002$ | $1,000,000,002$ |

As $x \longrightarrow-\infty, f(x) \longrightarrow-\infty$. As $x \longrightarrow \infty, f(x) \longrightarrow \infty$. This supports the conjecture.

## Exercises

Use the graph of each function to describe its end behavior. Support the conjecture numerically.
1.

2.


