DATE ____

1-3 Study Guide and Intervention

Continuity, End Behavior, and Limits

Continuity A function f(x) is **continuous** at x = c if it satisfies the following conditions.

- (1) f(x) is defined at *c*; in other words, f(c) exists.
- (2) f(x) approaches the same function value to the left and right of *c*; in other words, $\lim_{x \to c} f(x)$ exists.
- (3) The function value that f(x) approaches from each side of c is f(c); in other words, $\lim f(x) = f(c)$.

Functions that are not continuous are **discontinuous**. Graphs that are discontinuous can exhibit **infinite discontinuity**, **jump discontinuity**, or **removable discontinuity** (also called **point discontinuity**).

Example Determine whether each function is continuous at the given *x*-value. Justify using the continuity test. If discontinuous, identify the type of discontinuity as *infinite*, *jump*, or *removable*.

a.
$$f(x) = 2|x| + 3; x = 2$$

- (1) f(2) = 7, so f(2) exists.
- (2) Construct a table that shows values for f(x) for x-values approaching 2 from the left and from the right.

x	y = f(x)	х	y = f(x)
1.9	6.8	2.1	7.2
1.99	6.98	2.01	7.02
1.999	6.998	2.001	7.002

The tables show that y approaches 7 as x approaches 2 from both sides.

It appears that $\lim f(x) = 7$.

(3) $\lim_{x \to 2} f(x) = 7$ and f(2) = 7.

The function is continuous at x = 2.

Exercises

Determine whether each function is continuous at the given *x*-value. Justify your answer using the continuity test. If discontinuous, identify the type of discontinuity as *infinite*, *jump*, or *removable*.

1.
$$f(x) = \begin{cases} 2x + 1 \text{ if } x > 2\\ x - 1 \text{ if } x \le 2 \end{cases}; x = 2$$

2. $f(x) = x^2 + 5x + 3; x = 4$

b.
$$f(x) = \frac{2x}{x^2 - 1}; x = 1$$

The function is not defined at x = 1because it results in a denominator of 0. The tables show that for values of xapproaching 1 from the left, f(x)becomes increasingly more negative. For values approaching 1 from the right, f(x) becomes increasingly more positive.

x	y = f(x)	х	y = f(x)
0.9	-9.5	1.1	10.5
0.99	-99.5	1.01	100.5
0.999	-999.5	1.001	1000.5

The function has infinite discontinuity at x = 1.

1-3 Study Guide and Intervention (continued)

Continuity, End Behavior, and Limits

End Behavior The **end behavior** of a function describes how the function behaves at either end of the graph, or what happens to the value of f(x) as x increases or decreases without bound. You can use the concept of a limit to describe end behavior.

Left-End Behavior (as x becomes more and more negative): $\lim f(x)$

Right-End Behavior (as x becomes more and more positive): $\lim f(x)$

The f(x) values may approach negative infinity, positive infinity, or a specific value.

Example Use the graph of $f(x) = x^3 + 2$ to describe its end behavior. Support the conjecture numerically.

As *x* decreases without bound, the *y*-values also decrease without bound. It appears the limit is negative infinity: $\lim_{x \to -\infty} f(x) = -\infty$.

As x increases without bound, the y-values increase

without bound. It appears the limit is positive infinity:

$$\lim_{x \to \infty} f(x) = \infty$$

Construct a table of values to investigate function values as |x| increases.

x	-1000	-100	-10	0	10	100	1000
<i>f</i> (<i>x</i>)	-999,999,998	-999,998	-998	2	1002	1,000,002	1,000,000,002

As $x \to -\infty$, $f(x) \to -\infty$. As $x \to \infty$, $f(x) \to \infty$. This supports the conjecture.

Exercises

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Use the graph of each function to describe its end behavior. Support the conjecture numerically.

NAME _